The Effect of Sastrugi on TOA Albedo From CERES

Joseph Corbett¹, Wenying Su¹, Lusheng Liang¹, Zachery Eitzen¹ and Norman Loeb²

CERES Measurements

Terra Mean Reflectance and Albedo against Solar Azimuth Angle

Lat: 88° - 89° Lon: -93°- -101° Month: DEC SZA: 65°-70° RAZ: 60°-70° VZA: 50°-70°

 $\triangle Alb \approx \pm 0.04$

What are "sastrugi"....

- Small scale grooves or ridges of snow.
- Formed by deposition and erosion of snow by the wind.
- Generally aligned parallel to prevailing wind direction.
- Range of sizes 1-10's of m long, cm to m high.

...and how do they affect albedo?

- Alter the angle of incidence from horizontal.
- Increase inter-sastrugi reflections
- Depends on orientation relative to the sun

Modeled Albedo

Sastrugi also affect the directional reflectance

Important for CERES albedo estimates

Minimum albedo

Minimum reflectance

Maximum albedo

Example CERES viewing geometry:

- $VZA = 60^{\circ}$
- $-Raz = 60^{\circ}$

Maximum reflectance

Warren et al 1998

What do the CERES measurements show?

Terra Mean Reflectance and Albedo against Solar Azimuth Angle

Lat: 88° - 89° Lon: -93°- -101° Month: DEC SZA: 65°-70° RAZ: 60°-70° VZA: 50°-70°

 $\triangle Alb \approx \pm 0.04$

What do the CERES measurements show?

Terra Mean Reflectance and Albedo against Solar Azimuth Angle

Lat: 88° - 89° Lon: -93 °- -101°

Month: DEC SZA: 65°-70°

RAZ: 60°-70°

VZA: 50°-70°

Max reflectance

Max albedo

 $\triangle Alb \approx \pm 0.04$

$$A(\theta_0) = \frac{\rho(\theta_0, \theta_v, \phi)}{R(\theta_0, \theta_v, \phi)}$$

- Instantaneous
 - Would depend on solar-viewing-sastrugi geometry.

- Instantaneous
 - Would depend on solar-viewing-sastrugi geometry.
- What about mean monthly regional albedos (i.e. level 3 data products)?
 - Depends on:
 - A) if sastrugi are present in a region, and
 - B) the range of solar-viewing-sastrugi geometry's sampled.

Terra Mean Albedo against Solar Azimuth Angle

Lat: 88° - 89° Lon: -93°- -101° Month: DEC SZA: 65°-70° RAZ: 60°-70° VZA: 50°-70°

Lat: 85° - 86° Lon: -54°- -59° Month: DEC SZA: 65°-70° RAZ: 60°-70° VZA: 30°-70°

- Instantaneous
 - Would depend on solar-viewing-sastrugi geometry.
- What about mean monthly regional albedos (i.e. level 3 data products)?
 - Depends on:
 - · A) if sastrugi are present in a region, and
 - B) the range of solar-viewing-sastrugi geometries sampled.
- For regions with poor solar azimuth sampling:
 - Estimate the bias by:

$$bias = \bar{A}(\theta_v) - \bar{A}(\theta_v < 20^\circ)$$

Regional clear sky flux biases

FM1 and FM2 Mean Clear Sky Flux Bias 2001-2009 (Wm^2)

 $(\overline{bias}_{global, yearly} = 0.00Wm^{-2})$

Are these biases really caused by sastrugi?

- Its hard to to be entirely sure.
- Ways to check:
 - 1) compare anisotropy between regions of negative and positive bias
 - 2) use wind direction as a proxy for sastrugi orientation

The anisotropy is different between the two regions

ADM_{Neg} = Negative regions ADM_{Pos} = Positive regions

ADM_{Neg}: Lower forward peak and higher back peak - Sastrugi orientation *perpendicular*.

ADM_{Pos}: Higher forward peak and lower back peak - Sastrugi orientation *parallel*.

The difference between wind direction and solar azimuth angles

Most Freq Wind Direction - Most frequent solar azimuth 2001-2004 ($\Delta\phi_{ws}$)

Comparing with Clear Sky flux biases shows some agreement

FM1 and FM2 Mean Clear Sky Flux Bias 2001-2009 (Wm^2)

Bias and wind-sun orientation

Is this a better way to construct the ADMs?

 ADM_2 Mean Clear Sky Flux Bias 2001-2009 (Wm^2)

Conclusions

- It appears sastrugi introduce a bias into CERES TOA albedo/flux measurements.
- Size depends on temporal and spatial averaging
 - Instantaneous:
 - bias unknown, depends on geometry
 - Monthly-regional:
 - Clear sky < ±5 Wm⁻²
 - Yearly global:
 - Clear Sky ~ 0.00 Wm⁻²
- Explicitly attempting to account for sastrugi in angular models shows no improvement.

Thank You!

What about all-sky?

FM1 and FM2 Mean All Sky Flux Bias 2001-2009 (Wm^2)

$$\overline{bias}_{6months} = -0.17$$

